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Abstract—In multi-tenant clouds, requests need to traverse
a set of network functions (NFs) in a specific order, referred
to as a service function chain (SFC), for security and business
logic issues. Due to workload dynamics, the central controller
of a multi-tenant cloud needs to frequently update the SFC
routing, so as to optimize various network performance, such
as load balancing. To achieve effective SFC routing update, we
should consider two critical requirements: system robustness and
real-time update. Without considering these two requirements,
prior works either result in fragile clouds or suffer from large
update delay. In this paper, we propose a robustness-aware real-
time SFC routing update (R3-UA) scheme which takes both
requirements into consideration. R3-UA pursues robustness-
aware real-time routing update through two phases: robust NF
instance assignment and real-time SFC routing update. Two
algorithms with bounded approximation ratios are proposed for
these two phases, respectively. The large-scale simulation results
show the superior performance of R3-UA compared with other
alternatives.

Index Terms—Multi-Tenant Clouds, Robustness, Routing Up-
date, Load Balancing

I. INTRODUCTION

Cloud computing has transformed a large part of the

internet industry and attracted more and more attention

from academic and industry communities [1]–[3]. In multi-

tenant clouds, the cloud vendors (e.g., Amazon Web Services

and Google Cloud Platform) lease computing resources to

tenants (e.g., enterprises) with virtual machines (VMs). By

renting these computing resources, tenants can migrate not

only their computation tasks, such as training deep neural

networks, but also their network functions (NFs), such as

intrusion detection systems and firewalls, to the cloud [4]. It

should be noted that for security and business logic issues,

a tenant’s request should traverse the required NFs in a

specific order. For instance, a protected request forwarded to

a secure server has to traverse a firewall and then an intrusion

detection/prevention system (IDS/IPS) [5]. Usually, such a

set of ordered NFs is referred to as a service function chain

(SFC) and the problem to manipulate requests to fulfill the

SFC requirement is called SFC routing [6].

Due to the time-varying workload in a multi-tenant cloud,

an SFC routing configuration may be only efficient for a short

duration, and an out-of-date SFC routing configuration will

result in suboptimal performance in terms of load balancing

and end-to-end delay. To pursue high performance in the

cloud, we have to periodically update the cloud configu-

ration by the current request/traffic characteristics, which

is referred to as SFC routing update [6], [7]. With SFC

routing update, the cloud will be updated from the out-

of-date (or current) routing configuration to the up-to-date

one, which will significantly promote the cloud performance,

e.g., reduce the NF/link resource utilization. During SFC

routing update, we should take two important requirements

into considerations for SFC routing update: 1) the up-to-date

configuration can satisfy the system robustness requirements

when encountering system accidents (e.g., NF failures and

attacks from malicious tenants), which is referred to as

system robustness; 2) the up-to-date configuration should be

deployed in a limited time, i.e., real-time update.

System robustness requirements mainly come from the

widely spread malicious tenants and universal NF failures

[8], [9]. On the one hand, malicious tenants may use vicious

programs like Bolt [8] to collect information of other tenants

as well as the system. With the help of this information,

they can launch wide spectrum network attacks, including

denial of service (DoS) attacks and co-residency attacks with

a high success rate. To alleviate the impact of these attacks,

we expect to limit the number of NF instances traversed by
the requests from each tenant, since a malicious tenant can

easily attack all the NF instances carrying its requests. On the

other hand, the universal NF failures (incurred by problems

such as connectivity errors, hardware faults, and overloads)

will also weaken system robustness. It has been shown that

the median time of two consecutive failures is 7.5 hours for

firewalls while 5.2 hours for load balancers [9]. For intrusion

detection and prevention systems, the median time between

two consecutive failures is about 20 minutes [9]. Therefore,

NF failures may significantly degrade the robustness of a

cloud system. Since the failure of an NF instance will result

in an outage to the tenants who have requests being served

by it, to mitigate the impact from such universal NF failures

and enhance the system robustness, it is also expected to limit
the number of tenants served by each NF instance.

The real-time update (i.e., complete the update process in

a limited time) is required to ensure that the rules are not out-

of-date after the update procedure is completed. When there

are a large number of requests/flows in the cloud, it will

take too much time to deploy the up-to-date configuration.

According to [10], it takes at least 0.5 milliseconds (ms) for

the central controller to update a routing rule on a commodity978-0-7381-3207-5/21/$31.00 c© 2021 IEEE



switch. Considering that there are usually millions of request-

s/flows injected into the cloud every minute [11], the routing

update may cause a huge overhead to the central controller,

and the update delay will be too long to be acceptable. More

specifically, in a moderate-size cloud with about 10K servers,

there may reach 1300K flows/min to a server hosting around

15 VMs. Even if there are only 100 flows on each server

(less than 1%) that need routing update, it will take the

central controller at least 500s to update the SFC routing

of these flows. Since the workload in the multi-tenant clouds

is time-varying, the rules will be out-of-date after the update

procedure is completed. Accordingly, we need a real-time

SFC routing update scheme in order to complete the SFC

routing update in a limited time. Given the time to install one

routing rule into a switch, such a scheme can only install a

limited number of rules to the switches in the cloud whenever

the central controller decides to update the SFC routing.

Previous works of routing update [6], [7], [12], [13]

mainly concentrate on improving the performance of the

data plane, such as utility maximization or load balancing

among links/NF instances. For example, Qu et al. [13] study

the trade-off problem between network load balancing and

route reconfiguration overhead. They formulate this problem

as a multi-objective mixed integer optimization and propose

a heuristic algorithm to solve this problem. However, these

works do not consider the requirements of system robustness

and real-time update, thus may lead to weak system robust-

ness and long update delay.

To satisfy these two requirements for SFC routing update,

this paper proposes a robustness-aware real-time SFC routing

update (R3-UA) scheme. R3-UA pursues robustness-aware

real-time routing update through two phases: robust NF

instance assignment and real-time SFC routing update. The

main contributions of this paper are as follows:

1) We propose the robustness-aware real-time SFC routing

update (R3-UA) scheme for multi-tenant clouds, which

includes two phases: robust NF instance assignment

update and real-time SFC routing update.

2) For robust NF instance assignment update, we formulate

this problem as an integer linear programming. An

algorithm called NAUA with the approximation factor

of O(log h) is designed to solve this problem, where h
is the number of NF instances.

3) For real-time SFC routing update, we propose an al-

gorithm with a bounded approximation factor, called

RBRU, which can complete the update process under

a given delay constraint.

4) We evaluate the proposed algorithms in simulations us-

ing real-world topologies and datasets. The results show

R3-UA can decrease update delay by 70% and reduce

the impact of malicious tenants and NF failures on the

system robustness compared with other alternatives.

II. PRELIMINARIES

A. Multi-Tenant Cloud Model

A typical multi-tenant cloud consists of four components:

a service function set, a computing node set, a link set and

a central controller.

1) The service function set is composed of different NF

instances. Assume that there are b types of NFs, which

is denoted as S = {s1, s2, ..., sb}. For clearly problem

formulation, we use Ms = {ms
1,m

s
2, ...,m

s
hs
} to rep-

resent the set of NF instances of service type s ∈ S,

where hs = |Ms| is the number of NF instances with

type s. The total number of NF instances in the cloud

is denoted as h, i.e., h =
∑

s∈S hs. We also use set

M = M1∪M2∪ ...∪Ms to denote the set of all the NF

instances. It should be noted that every NF instance can

provide services to limited amount of traffic incurred by

requests, and such processing capacity is denoted by Cs
i

for NF instance ms
i ∈ M .

2) A set of computing nodes is responsible for providing

computing resources to tenants via creating VMs.

3) A set of l links E = {e1, e2, ..., el} is used to realize

the data transmission between different NFs/VMs. Let

Ce be the capacity of link e ∈ E.

4) The central controller is responsible for managing the

whole cloud system, e.g., determining the up-to-date

routing configuration and updating the SFC routing.

Tenants rent VMs and buy services from cloud vendors

according to their needs in multi-tenant clouds. A set of n
tenants is denoted as T = {t1, t2, ...tn}. Different tenants

may generate traffic with various service requirements on

different computing nodes. We identify a request by four

elements <source, destination, SFC requirement, tenant>.

It should be noted that every tenant can generate a certain

number of requests. The request set is denoted as Γ =
{γ1, γ2, ..., γd}, where d = |Γ| is the number of requests

in the cloud. Let f(γ) be the traffic amount associated with

request γ ∈ Γ.

B. Problem Statement

R3-UA updates SFC routes with the granularity of request-

s. Specifically, all the traffic belonging to the same request

will be assigned to the same NF instances and go through

the same path. However, the packets for different requests,

even if they belong to the same tenant, may be delivered to

different NFs through different paths. In general, the goal of

R3-UA is to pursue load balancing among all links and NF

instances as in many previous works [6], [7], [12]. However,

there are two specific requirements that should be satisfied

when pursuing system load balancing.

1) During the update process, the system robustness re-

quirement should be taken into consideration. A specific

tenant will be assigned with only k NF instances, where

k is a system-specific parameter. By limiting the number

of NF instances that are providing services to an arbi-

trary tenant, and leveraging the VM isolation techniques,

we can mitigate the impact of attacks launched by a

malicious tenant. For each NF instance, it can provide

services to at most q tenants. Again, q is a system-

specific parameter. This constraint limits the impact of

a single NF failure. By satisfying these two constraints



during SFC routing update, we can enhance system

robustness.

2) Due to the traffic dynamics in multi-tenant clouds,

it is required to complete the update procedure in a

pre-defined time threshold U . Otherwise, the routing

configuration would be out-of-date when the update

process is completed. Assume the central controller can

update one rule in time τ , this requirement limits the

number of rules that the central controller can refresh

in the update procedure.

In summary, R3-UA is to pursue the system load balancing

among all links and NF instances while satisfying the above

two requirements, real-time update and system robustness,

for SFC routing update in multi-tenant clouds.

C. Algorithm Workflow

Inspired by [7], R3-UA will be invoked periodically or

event-driven (e.g., NF failures or link congestion). During the

update process, we need to update the assignment between

NF instances and tenants for robustness requirements (i.e.,

update NF instance assignment), and update the SFC routing

for each request (i.e., update SFC routing). Regarding the

update period, we have the following thoughts: 1) Request-

s/traffic dynamics are very common in multi-tenant clouds,

which requires the SFC routing update in a short duration. 2)

Although requests are dynamic, the total traffic of a tenant

is relatively stable [14]. From this point of view, we can

update NF instances assigned to a tenant at a longer interval.

3) When we update the NF instance set of a tenant, the newly

allocated NF instances need to back up the state information

of the tenant’s requests [15]. The traffic fluctuation during this

period will affect tenants’ QoS. Therefore, the NF instances

assigned to a tenant should not be updated frequently.

In practice, R3-UA should invoke NF instance assignment

and SFC routing update in different frequencies. Thus, simi-

lar to [16], R3-UA pursues robustness-aware real-time routing

update through two phases: robust NF instance assignment
update (RNAU) and real-time SFC routing update (RTU).

The first phase is performed in a long-term granularity

(e.g., 10 minutes) to assign NF instances to tenants under

the system robustness constraints (i.e., the first requirement

discussed in Section II-B). The objective of the first phase

is to minimize the total amount of traffic that needs to be

migrated. The second phase is performed in a short-term

granularity (e.g., 1 minute) to update the SFC routing of each

request under delay constraint (i.e., the second requirement

discussed in Section II-B).

III. ROBUST NF ASSIGNMENT UPDATE

A. RNAU Formulation

When we update the NF instance assignment, some of the

requests have to be migrated to other NF instances, which not

only introduces considerable system overhead, but also incurs

more routing rule updates. Accordingly, when we consider

updating the NF instance assignment, the objective is to

minimize the total traffic that needs to be migrated. Let Ist,i
be a constant value denoting whether the NF instance ms

i is

assigned to tenant t or not before the update, bst,i represent the

traffic amount of tenant t processed on NF instance ms
i , f(t)

denote the total traffic demand of tenant t. For tenant t ∈ T ,

we use Rs
t to indicate the proportion of traffic that needs to

be served by service of type s ∈ S. It should be noted that

Rs
t is a constant value belonging to [0, 1]. If tenant t does

not need the service of type s, Rs
t is set to 0. With these

notations, the RNAU problem can be formulated as follows:

min
∑
t∈T

∑
s∈S

∑
i:ms

i∈Ms

bst,i · Ist,i · (1− yst,i)

S.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
i:ms

i∈Ms

xs
t,i = Rs

t , ∀t ∈ T, s ∈ S

xs
t,i ≤ yst,i, ∀t ∈ T, s ∈ S,ms

i ∈ Ms∑
i:ms

i∈Ms

yst,i ≤ k, ∀t ∈ T, s ∈ S

∑
t∈T

yst,i ≤ q, ∀s ∈ S,ms
i ∈ Ms∑

t∈T

xs
t,i · f(t) ≤ Cs

i , ∀s ∈ S,ms
i ∈ Ms

xs
t,i ∈ [0, 1], ∀t ∈ T, s ∈ S,ms

i ∈ Ms

yst,i ∈ {0, 1}, ∀t ∈ T, s ∈ S,ms
i ∈ Ms

(1)

where variable xs
t,i is the traffic proportion of tenant t served

by an NF instance ms
i ∈ Ms, and binary variable yst,i denotes

that whether the NF instance ms
i ∈ Ms is allocated to tenant

t or not.

The first set of equations means that the traffic proportion

of tenant t ∈ T which receives service of type s ∈ S should

be equal to Rs
t . The second set of inequalities says that the

traffic of tenant t can be processed by NF instance ms
i if

and only if NF instance ms
i is allocated to tenant t. The

third set of inequalities denotes that each tenant’s traffic will

be processed by at most k NF instances. The fourth set of

inequalities represents that each NF instance can process

traffic from at most q tenants. The last set of inequalities

limits the traffic load on each NF instance.

B. Robust NF Insatance Assignment Algorithm

Due to the binary nature of the variables in Eq. (1), it is an

NP-Hard problem, which is difficult to solve efficiently [16].

In this section, we propose an NF instance assignment update

algorithm (NAUA) to solve Eq. (1) in polynomial time. In this

algorithm, there are two steps. The first step is to formulate

it as a linear programming which can be efficiently solved,

by replacing {yst,i} with its fractional version. Suppose the

optimal solutions of the relaxed version of Eq. (1) are {x̃s
t,i}

and {ỹst,i}, in the second step, we determine how to assign

NF instances to each tenant, based on such optimal solutions.

For each type of network service s ∈ S, we first calculate

k(t) = �∑i:ms
i∈Ms

ỹst,i�, which will be the number of NF

instances of service type s that should be assigned to tenant

t. Then we divide all the NF instances into k(t) groups by

pursuing load balancing among groups, i.e., minimize the

maximum value of
∑

ỹs
t,i∈g ỹ

s
t,i, where g denote a group.

For each group g, we assign NF instance ms
i to tenant t

with probability
ỹs
t,i

zg
, and the traffic proportion of tenant t



processed by this instance is set to
x̃s
t,i·zg
ỹs
t,i

, where zg is the

sum of values of instances in group g. Till now, we have

assigned k(t) NF instances with service s ∈ S for each tenant

t ∈ T .

IV. REAL-TIME SFC ROUTING UPDATE

A. Problem Definition for RTU

Using the NAUA algorithm, we can derive the set of

NF instances assigned to each tenant. On the basis of this

assignment, we first construct a set of candidate routing paths

for each request γ ∈ Γ (denoted as Pγ), such that its SFC

requirement and robustness constraints can be satisfied with

any path in this candidate set. For each request, the SFC

routing path will be recorded in the packet header by the

ingress switch. Though there is no path field in classic IP

packets, we can use fields like MPLS labels or other unused

fields in the packet header as tags to record the SFC routing

information [6], [7], [17]. Whenever the route of a request

is updated, the central controller updates the corresponding

rules in the ingress switch. In general, the time to update a

rule is relatively stable (e.g., 0.5 milliseconds according to

[10]), which will be denoted as τ in the following.

To update the SFC routing in a real-time manner, we need

to select a new path from the candidate path set for each

request under a given delay constraint. Suppose we want

to complete the SFC routing update in time U , we can

only update routes for a limited number of requests (i.e.,
U
τ requests). Assuming that the path for request γ before

and after the update is p∗ and p, respectively, then we use

t(γ, p, p∗) to indicate whether the updated path p is the same

as the path p∗ or not. If p and p∗ are the same, which means

that the routing path of request γ does not need to be updated,

we have t(γ, p, p∗) = 0. Otherwise, t(γ, p, p∗) = 1, which

means the route of request γ needs to be updated. With these

notations, we can formulate the RTU problem as follows:

min ψ

S.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
γ∈Γ

∑
p∈Pγ

zpγ · t(γ, p, p∗) · τ ≤ U

∑
p∈Pγ

zpγ = 1, ∀γ ∈ Γ

∑
γ∈Γ

∑
p∈Pγ :ms

i∈p

zpγ · f(γ) ≤ Cs
i · ψ, ∀s ∈ S,ms

i ∈ Ms

∑
γ∈Γ

∑
p∈Pγ :e∈p

zpγ · f(γ) ≤ Ce · ψ, ∀e ∈ E

zpγ ∈ {0, 1}, ∀γ ∈ Γ, p ∈ Pγ

(2)

where binary variable zpγ denotes whether the request γ
selects the feasible path p ∈ Pγ or not.

The first set of inequalities says the update delay, i.e.,

the time to update the SFC routing in flow tables, cannot

exceed the threshold U . The second set of equations means

that every request will be forwarded through a path in the

candidate path set. The third and fourth sets of inequalities

express that the updated traffic load on each NF instance

and link cannot exceed Cm · ψ and Ce · ψ, respectively,

where ψ is the maximum resource (for both NF instances

and links) utilization. Our objective is to achieve the load

balance among links and NF instances, i.e., minimize the

maximum resource utilization ψ.

B. Algorithm to Solve RTU

Since the variable zpγ is binary, it is difficult to solve

RTU in a timely manner. Accordingly, in this section, we

propose a rounding-based routing update (RBRU) algorithm

to efficiently solve the RTU problem. This algorithm consists

of two steps. We first relax zpγ ∈ [0, 1] in (2) and derive a

linear programming problem. In the solution of such a relaxed

linear programming problem, each request may be split and

routed through multiple paths, which is not feasible to RTU.

Accordingly, in the second step, we will choose a unique path

for each request and obtain the integer solutions {ẑpγ} based

on a rounding method. Assume the optimal solutions of the

relaxed linear programming problem are {z̃pγ}, then for each

request γ ∈ Γ and feasible path p ∈ Pγ , we set ẑpγ = 1 with

probability z̃pγ . That is, the request γ will be routed through

path p with probability z̃pγ .

V. PERFORMANCE EVALUATION

A. Performance Metrics and Benchmarks

1) Performance Metrics: We adopt the following five

performance metrics to evaluate the efficiency of the R3-

UA scheme. The first metric is the update delay, which is

the time to complete the entire SFC routing update process.

The second metric is the maximum link utilization, which is

defined as max{l(e)/Ce, e ∈ E}, where l(e) is the traffic

load on link e. The third metric is the maximum NF instance

utilization. Similar to link utilization, if the load on each

NF instance ms
i ∈ Ms is l(ms

i ), then the maximum NF

instance utilization can be defined as max{l(ms
i )/C

s
i ,m

s
i ∈

Ms, s ∈ S}. The fourth metric is the maximum number of NF

instances assigned to a tenant, which reflects the maximum

negative effect by a single malicious tenant. The fifth metric

is the maximum number of tenants processed by an NF

instance, which reflects the maximum negative effect brought

by the failure of a single NF instance.

2) Benchmarks: We compare R3-UA with the other three

benchmarks. The first one is the current network configura-

tion denoted as CURR, modified from the OSPF protocol. It

only chooses the shortest path for each request to fulfill the

SFC requirement, and does not apply a routing update. This

benchmark is used to show that routing update can improve

network performance (i.e., reduce resource utilization). For

the second benchmark, the central controller typically uses

the multi-commodity flow (MCF) algorithm to determine the

target configuration based on the current workload, and uses

a scheduling algorithm (e.g., Dionysus [12]) to update the

routing scheme from the current configuration to the target

one. Since this solution may update too many requests, it will

cause a large update delay. For a fair comparison, we use an

improved version that only updates the routes of elephant

requests [18]. The combined method that updates elephant

requests with MCF and Dionysus algorithms is denoted as

EMDS. The third benchmark is a heuristic routing update
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Fig. 1: Link Utilization vs. Update Delay Constraint Left plot:
Topology (a); right plot: Topology (b).
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Fig. 2: NF Instance Utilization vs. Update Delay Constraint Left
plot: Topology (a); right plot: Topology (b).

algorithm denoted as HRUA, adopted from [19]. HRUA first

selects the NF instances whose load is heavier than the

average load, called heavy-loaded instances. Then, HURA

traverses each heavy-loaded instance in turn, and updates the

routes of requests on the current heavy-loaded NF instance

until the load of the current heavy-loaded instance is not

greater than the average load.

B. Simulation Evaluation

1) Simulation Settings: We conduct simulations on two

typical and practical topologies. The first topology is the Fat-

Tree, denoted by (a), which contains 80 switches (including

16 core switches, 32 aggregation switches, and 32 edge

switches) and 128 servers. The second topology is VL2,

which contains 70 switches and 245 servers. The capacity

of each link on both topologies is 1 Gbps. We use the data

traces of Alibaba Cluster [20] to generate requests. The SFC

requirement of each tenant is randomly generated from the

NF set [7]. According to [10], we set the time to install or

modify a forwarding rule as 0.5ms. The number of tenants

is set to 300. Moreover, according to the size of the two

topologies, we set the maximum number of NF instances

traversed by the requests from each tenant to be 5, i.e., k = 5,

and the maximum number of tenants served by each NF

instance to be 50, i.e., q = 50, by default.

2) Simulation Results: The first set of simulations mainly

investigates how the update delay constraint affects link

utilization and NF instance utilization. When there are 30K
requests in the cloud, we change the update delay constraint,

and the load balance performance, i.e., the maximum re-

source utilization, is shown in Figs. 1 and 3. These figures

show that link utilization and NF instance utilization are

reduced when the update delay constraint becomes loose

in R3-UA. Since EMDS and HRUA do not consider the

update delay, the change of update delay constraint does not

affect link utilization and NF instance utilization of these two

algorithms. Compared with HRUA, when R3-UA achieves

similar performance as HRUA, the update delay in R3-UA is
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Fig. 4: Link Utilization vs. No. of Requests When U = 2s Left
plot: Topology (a); right plot: Topology (b).
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Fig. 5: NF Instance Utilization vs. No. of Requests When U = 2s
Left plot: Topology (a); right plot: Topology (b).

lower. For instance, when there are 30K requests on topology

(b), HRUA needs about 7s to update all the forwarding rules

by the right plot of Fig. 3. The right plots of Fig. 1 and 2

show that R3-UA can achieve the similar route performance

with a update delay of 2s. Compared with EMDS, when the

update delay constraint exceeds 2s, R3-UA not only has a

lower update delay than that of EMDS, but also has better

load balancing performance.

The second set of simulations shows how the number of

requests affects the maximum resource utilization, including

link utilization and NF instance utilization, when the update

delay threshold U is set to 2s. Figs. 4 and 5 show that the

maximum resource utilization in R3-UA is closer to that of

HRUA as the number of requests increases, while the update

delay in R3-UA is much lower. Besides, compared with CUR-

R and EMDS, R3-UA can achieve lower resource utilization

and update delay. For example, in the left plot of Fig. 4, when

there are 50K requests on topology (a), the gap between R3-

UA and HRUA is around 6%, and the update delay in R3-

UA and HRUA are 2s and 11s, respectively. Also, R3-UA

can reduce link utilization by 14% and 44% compared with

CURR and EMDS, respectively. This is because that CURR

does not take update operation, and EMDS only updates the

elephant using the MCF algorithm instead of selecting the

requests that have the most significant impact on the system

performance to update their SFC routing.

The third set of simulations shows how the number of

requests affects the maximum number of NF instances allo-
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Fig. 7: Max. No. of Tenants vs. No. of Requests Left plot: Topology
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cated to a tenant and the maximum number of tenants that an

NF instance provides service to. Figs. 6 and 7 show that R3-

UA always performs better on these two metrics compared

with other benchmarks. For example, in the left plot of Fig.

6, when there are 50K requests, the maximum number of

NF instances allocated to a tenant through CURR, EMDS,

HRUA and R3-UA are all 20, while the value of R3-UA is 5.

Thus, R3-UA performs better on these two metrics and has

better system robustness.

From the above simulation results, we can make the

following conclusions. First, our algorithm can update more

requests, and thus achieves better resource utilization. Sec-

ond, with the increase of request number, R3-UA can achieve

much lower update delay, and the resource utilization per-

formance between R3-UA and that of HRUA is within 6%.

Third, our proposed algorithm can obtain much better system

robustness, and its impact on resource utilization performance

can be ignored.

VI. CONCLUSION

In this paper, we propose the robustness-aware real-time

SFC routing update (R3-UA) scheme, which takes into con-

sideration the requirements of real-time routing update and

system robustness in multi-tenant clouds. R3-UA contains

two phases: robust NF instance assignment update and real-

time SFC routing update. Two algorithms with bounded

approximation factors have been designed to solve the robust

NF instance assignment update problem and the real-time

SFC routing update problem, respectively. Both experimental

results and simulation results show high efficiency of our

proposed algorithms.
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